3.4 回归方程的显著性检验 我们事先并不能断定随机变量 \(y\) 与变量 \(x_1\),\(x_2\),\(\cdots\),\(x_p\) 之间确有线性关系,在进行回归参数的估计之前,用多元 ...
3.4 回归方程的显著性检验 我们事先并不能断定随机变量 \(y\) 与变量 \(x_1\),\(x_2\),\(\cdots\),\(x_p\) 之间确有线性关系,在进行回归参数的估计之前,用多元 ...
2.5 残差分析 一个线性回归方程通过了 \(t\) 检验或 \(F\) 检验,只是表明变量 \(x\) 与变量 \(y\) 之间的线性关系是显著的,或者说线性回归方程是有效的,但这并不能保证数据拟 ...
3.5 中心化和标准化 在多元线性回归中,由于涉及多个自变量,自变量单位往往不同,给利用回归方程进行结构分析带来一些困难。由于有时多元回归涉及的数据量很大,可能因为舍入误差而使计算结果不理想。因此, ...
2.4 回归方程的显著性检验 方程 \(\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x\) 是否真正描述了变量 \(y\) 与变量 \(x\) 之间的统计规律性, ...
3.2 回归参数的估计 与一元线性回归类似,我们需要对回归参数进行估计。估计的方法一般有两种,最小二乘估计和最大似然估计。 3.2.1 回归参数的普通最小二乘估计 多元线性回归方程未知 ...
3.6 多元线性回归的区间估计 3.6.1 回归系数的置信区间 当我们有了参数向量 \(\bm{\beta}\) 的估计量 \(\hat{\bm{\beta}}\) 时,需构造 \(\beta_j ...
3.1 多元线性回归模型 在许多实际问题中,一元线性回归只不过是回归分析中的一个特例,我们还需要进一步讨论多元线性回归问题。 3.1.1 多元线性回归模型的一般形式 设随机变量 \(y ...
4.2 一元加权最小二乘估计 4.2.1 一元加权最小二乘估计的形式 当我们研究的问题具有异方差性时,就违背了线性回归模型的基本假定——高斯-马尔科夫条件。此时,不能用普通最小二乘法进行参数估计, ...
1.1 变量间的关系 互有联系的变量之间根据其紧密程度的不同,可以有两种关系,一种确定性关系,一种非确定性关系。 1.1.1 确定性关系 一个变量的变化能完全决定另一个变量的的变化。 ...
3.3 回归参数估计量的性质 归纳回归参数估计量的性质如下。 3.3.1 线性性 在多元线性回归中,无论应用最小二乘估计还是最大似然估计,得到回归参数向量 \(\hat{\bm{\beta}}\ ...